Fritz Vahrenholt bei NIUS

Fritz Vahrenholt war Gast in der Talkrunde bei NIUS. Hier geht es zur Sendung.

+++

Geoforschungszentrum Potsdam:

Abrupte Verschiebung des tropischen Pazifikklimas während der Kleinen Eiszeit

Zusammenfassung

Ein neuer El Niño hat offiziell begonnen. Das im Abstand weniger Jahre zyklisch wiederkehrende Klimaphänomen hat seinen Ursprung im tropischen Pazifik und wird das Wetter auf dem gesamten Planeten für das nächste Jahr oder länger bestimmen – unter anderem mit Hitze und Trockenheit im westpazifischen Raum. Ein El-Niño-ähnliches Verhalten kann auch auf längeren Zeitskalen von Jahrzehnten oder Jahrhunderten auftreten. Das zeigt ein internationales Forschungsteam um Ana Prohaska von der Universität Kopenhagen und Dirk Sachse vom Deutschen GeoForschungsZentrum (GFZ) für die jüngste Vergangenheit: das Ende der Kleinen Eiszeit zwischen 1600 und 1900 n.Chr. Ihre Analyse molekularer Pflanzenfossilien in den Sedimenten eines Sees auf den Philippinen deutet auf eine ungewöhnlich trockene Phase in der Region hin. Die Ergebnisse sind jetzt im Fachmagazin Communications Earth and Environment erschienen. Sie zeigen, wie wichtig das Verständnis der komplexen Zusammenhänge von Ozean und Klima aus der Vergangenheit für die Verbesserung von Klimamodellen und die Vorhersage künftiger Klimaveränderungen ist.

Hintergrund: Das Phänomen El Niño

Ein auffälliges Merkmal des Klimas im äquatorialen Pazifik ist seine Ost-West-Asymmetrie, mit wärmerem Oberflächenwasser im Westen und kälterem im Osten. Die Ostwinde treiben das Oberflächenwasser nach Westen, dadurch kann der äquatoriale Auftrieb kühleres Wasser auf die Ostseite bringen. Diese Asymmetrie bricht im heutigen Klima regelmäßig zusammen und führt zu vorübergehenden El-Niño-Bedingungen, die zyklisch aber in unregelmäßigem Rhythmus von einigen Jahren auftreten:

Entlang des Äquators erhöhen sich die Meeresoberflächentemperaturen von der peruanischen Küste bis in den zentralen Pazifik. Der Südostpassat schwächt sich stark ab, es können sogar leichte Westwinde entstehen. Im westlichen äquatorialen Pazifik, der ansonsten durch reichhaltige Niederschläge charakterisiert ist, hält eine außergewöhnliche Trockenheit Einzug, wohingegen es an den sonst trockenen Ost-Rändern des Pazifiks zu heftigen Regenfällen kommen kann. 

Vor dem Hintergrund der globalen Erwärmung wird erwartet, dass El Niño zunehmend rekordverdächtig hohe Temperaturen und verschiedene extreme Klimaereignisse wie Dürren, Überflutungen und Waldbrände mit sich bringen wird, die das Leben und Wohlergehen von Millionen von Menschen erheblich beeinträchtigen werden.

El-Niño-ähnliche Phänomene auf längeren Zeitskalen

El Niño ist zwar ein jahreszeitlich bedingtes Klimaphänomen, aber das Klimasystem des tropischen Pazifiks zeigt auch auf längeren Zeitskalen von Jahrzehnten und Jahrhunderten ein El-Niño-ähnliches Verhalten, das mit dem Ost-West-Gefälle der Meeresoberflächentemperaturen im Pazifik zusammenhängt. Das zeigt jetzt ein Team um Ana Prohaska, Assistenzprofessorin an der Universität Kopenhagen und vormals Gastwissenschaftlerin am GFZ, und Dirk Sachse, Arbeitsgruppenleiter in der GFZ-Sektion 4.6 „Geomorphologie“ sowie Direktor von Topic 5 „Landschaften der Zukunft“ des Helmholtz-Forschungsprogramms „Changing Earth – Sustaining our Future“, in der Zeitschrift Communications Earth and Environment.

Sie beschreiben eine solch ausgeprägte Klimaverschiebung zum Ende der Kleinen Eiszeit von etwa 1630 bis 1900 n.Chr für die Philippinen. Besonders bemerkenswert ist demnach der kurze Zeitraum von nur einer Generation, innerhalb dessen sich die Bedingungen für die Dauer von mehr als 200 Jahren geändert haben. 

Klima-Einblicke in die Vergangenheit durch Untersuchungen an Sedimentbohrkernen

Das Forschungsteam untersuchte dafür Sedimentbohrkerne aus dem Bulusan See im Norden der Philippinen, die im Jahr 2013 gewonnen wurden. Ihre Sedimentabfolge gibt Einblicke in die klimatischen Entwicklungen der vergangenen 1.400 Jahre in einer Region, die heute stark von El-Niño-Ereignissen betroffen ist. Insbesondere analysierten die Forschenden die Zusammensetzung von stabilen Wasserstoff-Isotopen in Blattwachs-Biomarkern (δDwax). Dabei handelt es sich um molekulare Fossilien, die von den Blattoberflächen höherer Pflanzen stammen und dort als Schutzschicht fungieren. Die Analysen ermöglichen Erkenntnisse darüber, wie und wie gut die Pflanzen zu ihren Lebzeiten mit Wasser versorgt waren.

Trockenere Bedingungen in der zweiten Hälfte der Kleinen Eiszeit

Die Studie zeigt einen plötzlichen und signifikanten Anstieg der δDwax-Werte zwischen 1600 und 1650, was auf eine Verschiebung hin zu trockeneren Bedingungen im westlichen tropischen Pazifik während der zweiten Hälfte der Kleinen Eiszeit hindeutet. Die Forschenden führen diese Veränderung auf Änderungen des mittleren Zustands des tropischen Pazifiks zurück, die insbesondere mit zonalen Gradienten, also den Ost-West-Veränderungen der Meeresoberflächentemperatur zusammenhängen.

Die Bedeutung der aktuellen Studie für Klimavorhersagen

Ana Prohaska, Hauptautorin der Studie, unterstreicht die Bedeutung dieser Untersuchung: „Unsere Studie liefert überzeugende Beweise für die komplizierte Beziehung zwischen zonalen Gradienten der Meeresoberflächentemperatur und der Niederschslagsverteilung im tropischen Pazifik. Das Verständnis der Art und des Tempos der Klimaveränderungen in der Vergangenheit ist entscheidend für die Vorhersage künftiger Klimaveränderungen und ihrer potenziellen Auswirkungen auf diese empfindliche Region.“

Dirk Sachse vom GFZ fügt hinzu: „Obwohl es immer mehr Belege für solche plötzlichen Veränderungen in der Vergangenheit gibt, die das regionale Klima auch über längere Zeiträume stark beeinflusst haben, können aktuelle Klimamodelle die zugrundeliegenden abrupten Verschiebungen des mittleren Zustands im tropischen Pazifik nicht reproduzieren. Dies unterstreicht, dass das Verständnis der zugrundeliegenden Mechanismen noch immer begrenzt ist. Vor dem Hintergrund des anthropogenen Klimawandels ist ein besseres Verständnis der Triebkräfte und Folgen, den die komplexe Dynamik des mittleren Zustands des tropischen Pazifiks hat, von großer Bedeutung. Hierfür spielt die Integration paläoklimatologischer Daten in moderne Klimamodelle eine entscheidende Rolle.“

Originalpublikation:

Ana Prohaska, Alistair W.R. Seddon, Bernd Meese, Katherine J. Willis, John C. H. Chiang, Dirk Sachse: Abrupt change in tropical Pacific climate mean state during the Little Ice Age. Commun Earth Environ4, 227 (2023). DOI: 10.1038/s43247-023-00882-7
doi.org/10.1038/s43247-023-00882-7

+++

Pro7:

AUSLÖSCHUNG DER MENSCHHEIT

Experten sagen Weltuntergang voraus – es ist nicht der Klimawandel

Der Untergang der Welt – immer wieder ein dankbares Thema, das zur Diskussion anregt: Wann wird er kommen, wie und vor allem durch was? Wissenschaftler:innen haben nun in einer großen Studie den wahren „Schuldigen“ für eine eventuelle Apokalypse ausgemacht – der Klimawandel soll es aber nicht sein.

+++

Minola et al. 2023:

The contribution of large-scale atmospheric circulation to variations of observed near-surface wind speed across Sweden since 1926

This study investigates the centennial-scale (i.e., since 1926) variability of observed near-surface wind speed across Sweden. Results show that wind speed underwent various phases of change during 1926–2019, i.e., (a) a clear slowdown during 1926–1960; (b) a stabilization from 1960 to 1990; (c) another clear slowdown during 1990–2003; (d) a slight recovery/stabilization period for 2003–2014, which may continue with a possible new slowdown. Furthermore, the performance of three reanalysis products in representing past wind variations is evaluated. The observed low-frequency variability is properly simulated by the selected reanalyses and is linked to the variations of different large-scale atmospheric circulation patterns (e.g., the North Atlantic Oscillation). However, the evident periods of decreasing trend during 1926–1960 and 1990–2003, which drive most of the stilling in the last century, are missing in the reanalyses and cannot be realistically modeled through multiple linear regression by only using indexes of atmospheric circulation. Therefore, this study reveals that changes in large-scale atmospheric circulation mainly drive the low-frequency variability of observed near-surface wind speed, while other factors (e.g., changes in surface roughness) are crucial for explaining the periods of strong terrestrial stilling across Sweden.

+++

Bob Yirka , Phys.org:

New York City building weight contributing to subsidence drop of 1–2 millimeters per year

A trio of oceanologists at the University of Rhode Island working with a geologist colleague from USGS Moffett Field has found that the massive weight of buildings in New York City is contributing to its subsidence drop. In their study, reported in the journal Earth’s Future, Pei-Chin Wu, Meng Wei, Steven D’Hondt and Tom Parsons calculated the total mass of the buildings that make up New York City and applied it to models that predict natural subsidence to estimate how much overall subsidence is likely to occur in the coming years.

Subsidence, in geological terms, is when land becomes lower in altitude due to underground settling or removal of material or water—meaning, it sinks. Scientists have noted for many years that most coastal cities are slowly sinking due to settling and reductions in the water table. New York City, for example, has been sinking for many years, and likely will continue to do so in the future.

Coastal areas are particularly at risk due to climate change, which is leading to sea level rise. Such areas, it is believed, are likely to face serious challenges in the near future. In this new effort, the research team noted that few, if any, estimates of subsidence for cities such as New York, take into account the massive weight of the buildings in downtown areas. In this new effort, they sought to overcome that problem for New York by adding up the weight of all of its buildings and factoring in its impact on subsidence.

Weiterlesen

Teilen: